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reg4opt package


Submodules




reg4opt.regression module

Solvers for operator and convex regression.


	
reg4opt.regression.closed_form_solution_cr(x, y, w, mu, L)

	Closed form solution of convex regression with 2 training points.


	Parameters

	
	x (list) – The points \(x_i\) where the original function is evaluated.


	y (list) – The evaluations of the function \(y_i = f(x_i)\).


	w (list) – The valuations of the gradient \(w_i = \nabla f(x_i)\).


	mu (float) – The strong convexity modulus of the target function.


	L (float) – The smoothness modulus of the target function.






	Returns

	
	list – The approximate function evaluated in the points \(x_i\).


	list – The gradient of the approximate function evaluated in the points
\(x_i\).















	
reg4opt.regression.closed_form_solution_or(x, y, zeta)

	Closed form solution of operator regression with 2 training points.


	Parameters

	
	x (list) – The points \(x_i\) where the original operator is evaluated.


	y (list) – The evaluations of the operator \(y_i = \mathcal{T} x_i\).


	zeta (float) – The Lipschitz modulus for the reconstructed operator.






	Returns

	The approximate operator evaluated in the points \(x_i\).



	Return type

	list










	
reg4opt.regression.convex_regression(x, y, mu, L, w=None, **kwargs)

	Convex regression.

The function solves a convex regression problem


\[\begin{split}\begin{align}
    &\min_{f_i, g_i, \ i \in [D]} \frac{1}{D} \sum_{i = 1}^D (f_i - y_i)^2 \\
    &\text{s.t.} \ f_i - f_j - \langle g_j, x_i - x_j \rangle \geq \\
    &\qquad \frac{1}{2(1 - \mu / L)} \left( \frac{1}{L} \| g_i - g_j \|^2
    + \mu \| x_i - x_j \|^2 - \frac{2\mu}{L} \langle g_j - g_i, x_j - x_i \rangle \right), \quad 1 \leq i < j \leq D
\end{align}\end{split}\]

where \(y_i = f(x_i)\), \(i = 1, \ldots, D\), are
evaluations of the function to be approximated, and \(0 < \mu < L\)
are the strong convexity and smoothness moduli for the target function.

The function can also incorporate gradient information, in which case the
problem becomes:


\[\begin{split}\begin{align}
    &\min_{f_i, g_i, \ i \in [D]} \frac{1}{D} \sum_{i = 1}^D (f_i - y_i)^2 + \| g_i - w_i \|^2 \\
    &\text{s.t.} \ f_i - f_j - \langle g_j, x_i - x_j \rangle \geq \\
    &\qquad \frac{1}{2(1 - \mu / L)} \left( \frac{1}{L} \| g_i - g_j \|^2
    + \mu \| x_i - x_j \|^2 - \frac{2\mu}{L} \langle g_j - g_i, x_j - x_i \rangle \right), \quad 1 \leq i < j \leq D
\end{align}\end{split}\]

with \(w_i = \nabla f_i(x_i)\).

In case \(D = 2\) (and gradient information is given), the function
returns a closed form solution, see closed_form_solution_cr. Otherwise
the solution is (approximately) computed using a solver based on the
Peaceman-Rachford splitting, see prs_solver_cr.

Notice that the training data x and y (and the optional w) should be
lists of column numpy arrays (for the sake of efficiency, no check is
applied to them).


	Parameters

	
	x (list) – The points \(x_i\) where the original function is evaluated.


	y (list) – The evaluations of the function \(y_i = f(x_i)\).


	mu (float) – The strong convexity modulus of the target function.


	L (float) – The smoothness modulus of the target function.


	w (list, optional) – Optional gradient evaluations to add data to the regression problem.


	**kwargs (tuple) – Arguments that should be passed to the solver.






	Returns

	
	list – The approximate function evaluated in the points \(x_i\).


	list – The gradient of the approximate function evaluated in the points
\(x_i\).















	
reg4opt.regression.operator_regression(x, y, zeta, **kwargs)

	Operator regression.

The function solves an operator regression problem


\[\begin{split}\begin{align}
    &\min_{t_i, \ i \in [D]} \frac{1}{D} \sum_{i = 1}^D \| t_i - y_i \|^2 \\
    &\text{s.t.} \ \| t_i - t_j \|^2 \leq \zeta^2 \| y_i - y_j \|^2, \quad 1 \leq i < j \leq D
\end{align}\end{split}\]

where \(y_i = \mathcal{T} x_i\), \(i = 1, \ldots, D\), are
evaluations of the operator to be approximated, and \(\zeta \in (0, 1]\)
is the Lipschitz continuity modulus for the approximated operator.

In case \(D = 2\), the function returns a closed form solution, see
closed_form_solution_or. If \(D > 2\) the solution is (approximately)
computed using a solver based on the Peaceman-Rachford splitting,
see prs_solver_or.

Notice that the training data x and y should be lists of column numpy
arrays (for the sake of efficiency, no check is applied to them).


	Parameters

	
	x (list) – The points \(x_i\) where the original operator is evaluated.


	y (list) – The evaluations of the operator \(y_i = \mathcal{T} x_i\).


	zeta (float) – The Lipschitz modulus for the reconstructed operator.


	**kwargs (tuple) – Optional arguments for the PRS solver.






	Returns

	
	list – The approximate operator evaluated in the points \(x_i\).


	float – The Lipschitz modulus (either the given one or the one computed via
autotuning).















	
reg4opt.regression.prs_solver_cr(x, y, mu, L, w=None, tol=0.01, num_iter=1000.0, rho=1)

	Convex regression solver using PRS.

This function implements a tailored solver for convex regression based
on the Peaceman-Rachford splitting. The solver can optionally exploit
gradient information in the cost.


	Parameters

	
	x (list) – The points \(x_i\) where the original function is evaluated.


	y (list) – The evaluations of the function \(y_i = f(x_i)\).


	mu (float) – The strong convexity modulus of the target function.


	L (float) – The smoothness modulus of the target function.


	w (list, optional) – Optional evaluations of the gradient \(w_i = \nabla f(x_i)\).


	tol (float, optional) – The solver stops if the fixed point residual
\(\| x^{\ell+1} - x^\ell \|\) is below this tolerance.


	num_iter (int, optional) – The maximum number of iterations that the solver can perform.


	rho (float, optional) – The penalty parameter for PRS, must be a positive scalar.






	Returns

	
	list – The approximate function evaluated in the points \(x_i\).


	list – The gradient of the approximate function evaluated in the points
\(x_i\).















	
reg4opt.regression.prs_solver_or(x, y, zeta, tol=0.01, num_iter=1000.0, rho=1)

	Operator regression solver using PRS.

This function implements a tailored solver for operator regression based
on the Peaceman-Rachford splitting.


	Parameters

	
	x (list) – The points \(x_i\) where the original operator is evaluated.


	y (list) – The evaluations of the operator \(y_i = \mathcal{T} x_i\).


	zeta (float) – The Lipschitz modulus for the reconstructed operator.


	tol (float, optional) – The solver stops if the fixed point residual
\(\| x^{\ell+1} - x^\ell \|\) is below this tolerance.


	num_iter (int, optional) – The maximum number of iterations that the solver can perform.


	rho (float, optional) – The penalty parameter for PRS, must be a positive scalar.






	Returns

	The approximate operator evaluated in the points \(x_i\).



	Return type

	list












reg4opt.operators module

Operator template and examples.


	
class reg4opt.operators.AveragedOperator(o, a)

	Bases: reg4opt.operators.Operator

Averaged operator.

This class defines an operator as the averaging (or relaxation) of a given
operator. That is, given the operator \(\mathcal{T}\), and
\(a \in (0,1]\), the class defines
\((1 - a) \mathcal{I} + a \mathcal{T}\).


	
operator(x, *args, **kwargs)

	An evaluation of the operator.


	Parameters

	
	x (array_like) – The x where the operator should be evaluated.


	*args – The time at which the operator should be evaluated. Not required if
the operator is static.


	**kwargs – Any other required argument.

















	
class reg4opt.operators.CompositeOperator(o2, o1)

	Bases: reg4opt.operators.Operator

Composition of operators.

This class defines an operator as the composition of two given operators.
That is, given the operators \(\mathcal{T}\) and \(\mathcal{R}\),
the class defines \(\mathcal{T} \circ \mathcal{R}\). The domains and
ranges of the two operators must be compatible.


	
operator(x, *args, **kwargs)

	An evaluation of the operator.


	Parameters

	
	x (array_like) – The x where the operator should be evaluated.


	*args – The time at which the operator should be evaluated. Not required if
the operator is static.


	**kwargs – Any other required argument.

















	
class reg4opt.operators.DiscreteDynamicOperator(ops, t_s=1)

	Bases: reg4opt.operators.Operator

Dynamic operator from a sequence of static ones.

This class creates a dynamic operator from a list of static operators. That
is, given a sampling time \(T_\mathrm{s}\), the operator at time
\(t_k = k T_\mathrm{s}\) is:


\[\mathcal{T}(\pmb{x}; t_k) = \mathcal{T}_k(\pmb{x})\]

with \(\mathcal{T}_k\) the k-th static operator in the list.


	
operator(x, t, **kwargs)

	An evaluation of the operator.


	Parameters

	
	x (array_like) – The x where the operator should be evaluated.


	*args – The time at which the operator should be evaluated. Not required if
the operator is static.


	**kwargs – Any other required argument.













	
sample(t)

	Sample the operator.

The difference with the default Operator method is that it returns an
operator in the list rather than a SampledOperator.


	Parameters

	t (float) – The time at which the operator should be sampled.



	Returns

	The closest operator in the list.



	Return type

	Operator














	
class reg4opt.operators.ForwardBackward(f, g, p)

	Bases: reg4opt.operators.Operator

Forward-backward operator.

This class defines the forward-backward operator of two given cost
functions \(f\) and \(g\). That is, the operator:


\[\operatorname{prox}_{\rho g}\left( x - \rho \nabla f(x) \right).\]






	
class reg4opt.operators.Gradient(f, s)

	Bases: reg4opt.operators.Operator

Gradient operator.

This class defines the gradient step operator (or forward operator) of a
given cost function \(f\).


	
operator(x, *args)

	An evaluation of the operator.


	Parameters

	
	x (array_like) – The x where the operator should be evaluated.


	*args – The time at which the operator should be evaluated. Not required if
the operator is static.


	**kwargs – Any other required argument.

















	
class reg4opt.operators.Identity(dom, rng=None, time=None)

	Bases: reg4opt.operators.Operator

Identity operator.


	
operator(x, *args, **kwargs)

	An evaluation of the operator.


	Parameters

	
	x (array_like) – The x where the operator should be evaluated.


	*args – The time at which the operator should be evaluated. Not required if
the operator is static.


	**kwargs – Any other required argument.

















	
class reg4opt.operators.Operator(dom, rng=None, time=None)

	Bases: object

Template class for operators.

This class serves as a template for operators:



\[\mathcal{T} : \mathbb{D}_1 \to \mathbb{D}_2\]




where \(\mathbb{D}_i \subset \mathbb{R}^{n_{i,1} \times n_{i,2} \times \cdots}\)
for some given dimensions \(n_{i,1}, n_{i,2}, \ldots\), \(i = 1, 2\).

Operator objects support the following operations:



	composition,


	averaging (a.k.a. relaxation),


	addition,


	product by a scalar.







An Operator should expose the operator method to perform evaluations
of \(\mathcal{T}\). The class then implements the fpr which computes
the fixed point residual \(\| \mathcal{T} x - x\|\) at a given point
\(x\).

The Operator can also be time-varying, in which case the function
sample is also available.


	
dom

	The operator’s domain.


	Type

	tvopt.sets.Set










	
rng

	The operator’s range.


	Type

	tvopt.sets.Set










	
time

	The time domain \(\mathbb{R}_+\). If the operator is static this is
None.


	Type

	tvopt.sets.T










	
is_dynamic

	Attribute to check if the operator is static or dynamic.


	Type

	bool










	
average(a)

	Averaging (a.k.a. relaxation) of the operator.

The method returns an averaged version of the operator, defined as


\[(1 - a) \mathcal{I} + a \mathcal{T}\]

where \(a \in (0,1]\) and \(\mathcal{I}\) is the identity
operator.


	Parameters

	a (float) – The relaxation constant.



	Returns

	DESCRIPTION.



	Return type

	Operator






See also


	AveragedOperator
	The averaged operator object.












	
compose(other)

	Compose the operator with a second one.

The method composes the operator with a second one, provided that the
range of the former coincides with the domain of the latter.


	Parameters

	other (Operator) – The second operator.



	Returns

	An operator object defining the composition.



	Return type

	Operator






See also


	CompositeOperator
	The composite operator object.












	
fpr(x, *args, **kwargs)

	Evaluate the fixed point residual (FPR).

This method returns the FPR


\[\| \mathcal{T} x - x \|.\]


	Parameters

	
	x (array_like) – The point whose FPR should be evaluated.


	*args – The time at which the operator should be evaluated. Not required if
the operator is static.


	**kwargs – Any other required argument.






	Returns

	The FPR at x.



	Return type

	float










	
operator(x, *args, **kwargs)

	An evaluation of the operator.


	Parameters

	
	x (array_like) – The x where the operator should be evaluated.


	*args – The time at which the operator should be evaluated. Not required if
the operator is static.


	**kwargs – Any other required argument.













	
sample(t)

	Sample the operator.

This method returns a SampledOperator object which consists of the
operator as evaluated at time t.

If the operator is static, the operator itself is returned.


	Parameters

	t (float) – The time at which the operator should be sampled.



	Returns

	The sampled operator or, if static, the operator itself.



	Return type

	Operator






See also


	SampledOperator
	The sampled operator object.
















	
class reg4opt.operators.PeacemanRachford(f, g, p)

	Bases: reg4opt.operators.Operator

Peaceman-Rachford operator.

This class defines the Peaceman-Rachford operator of two given cost
functions \(f\) and \(g\). That is, the operator:


\[\operatorname{refl}_{\rho g} \left( \operatorname{refl}_{\rho f}(x) \right).\]






	
class reg4opt.operators.Proximal(f, p)

	Bases: reg4opt.operators.Operator

Proximal operator.

This class defines the proximal operator (or backward operator) of a
given cost function \(f\). That is, the operator:


\[\operatorname{prox}_{\rho f}(x) = \operatorname{arg\,min}_{y} \left\{ f(y) + \frac{1}{2 \rho} \|y - x\|^2 \right\}.\]


	
operator(x, *args)

	An evaluation of the operator.


	Parameters

	
	x (array_like) – The x where the operator should be evaluated.


	*args – The time at which the operator should be evaluated. Not required if
the operator is static.


	**kwargs – Any other required argument.

















	
class reg4opt.operators.Reflective(f, p)

	Bases: reg4opt.operators.Operator

Reflective operator.

This class defines the reflective operator of a given cost function
\(f\). That is, the operator:


\[\operatorname{refl}_{\rho f}(x) = 2 \operatorname{prox}_{\rho f}(x) - x.\]






	
class reg4opt.operators.SampledOperator(o, t)

	Bases: reg4opt.operators.Operator

Sampled operator.

This class defines a static operator by sampling a given dynamic operator,
that is, by fixing the time argument to a given value.


	
operator(x, **kwargs)

	An evaluation of the operator.


	Parameters

	
	x (array_like) – The x where the operator should be evaluated.


	*args – The time at which the operator should be evaluated. Not required if
the operator is static.


	**kwargs – Any other required argument.

















	
class reg4opt.operators.ScaledOperator(o, c)

	Bases: reg4opt.operators.Operator

Scaled operator.

This class defines an operator multiplied by a scalar. That is, given the
operator \(\mathcal{T}\) and \(c \in \mathbb{R}\), the class defines
\(c \mathcal{T}\).


	
operator(x, *args, **kwargs)

	An evaluation of the operator.


	Parameters

	
	x (array_like) – The x where the operator should be evaluated.


	*args – The time at which the operator should be evaluated. Not required if
the operator is static.


	**kwargs – Any other required argument.

















	
class reg4opt.operators.SeparableOperator(ops)

	Bases: reg4opt.operators.Operator

Separable operator.

This class defines a separable operator, that is


\[\begin{split}\mathcal{T}(\pmb{x}; t) = \begin{bmatrix} \vdots \\ \mathcal{T}_i(x_i; t) \\ \vdots \end{bmatrix}\end{split}\]

where \(x_i \in \mathbb{R}^{n_1 \times n_2 \times \ldots}\) for each
\(i = 1, \ldots, N\). Each of the component operators \(T_i\) can
be either static or dynamic. This is useful for defining distributed
optimization problems.

The overall dimension of the domain is
\(n_1 \times n_2 \times \ldots \times N\), meaning that the last
dimension indexes the components.

The class exposes the same methods as any Operator, with the difference
that the keyword argument i can be used to evaluate only a single component.
If all components are evaluated, an ndarray is returned with the last
dimension indexing the components.

The class has the Operator attributes, with the following additions.


	
ops

	The component operators.


	Type

	list










	
N

	The number of components.


	Type

	int










	
is_dynamic

	True if at least one component is dynamic.


	Type

	bool










	
operator(x, *args, i=None, **kwargs)

	An evaluation of the separable operator.

This method performs an evaluation of the component operators. If the
keyword argument i is specified, then only the corresponding operator
is evaluated.


	Parameters

	
	x (array_like) – The x where the operator(s) should be evaluated.


	*args – The time at which the operator(s) should be evaluated. Not required
if they are static.


	i (int, optional) – If specified, only the corresponding component operator
\(\mathcal{T}_i\) is evaluated.


	**kwargs – Any other required argument.






	Returns

	If i is specified, the evaluation of the i-th component,
otherwise an ndarray stacking the components evaluations along
the last dimension.



	Return type

	ndarray














	
class reg4opt.operators.SumOperator(o1, o2)

	Bases: reg4opt.operators.Operator

Sum of operators.

This class defines an operator as the sum of two given operators. That is,
given the operators \(\mathcal{T}\) and \(\mathcal{R}\),
the class defines \(\mathcal{T} + \mathcal{R}\). The domains and ranges
of the two operators must be compatible.


	
operator(x, *args, **kwargs)

	An evaluation of the operator.


	Parameters

	
	x (array_like) – The x where the operator should be evaluated.


	*args – The time at which the operator should be evaluated. Not required if
the operator is static.


	**kwargs – Any other required argument.



















reg4opt.interpolation module

Interpolation of Lipschitz continuous operators.


	
reg4opt.interpolation.alternating_projections(s, x=None, tol=1e-10, num_iters=1000)

	Method of alternating projections.

Given an initial point \(x^0\), this method computes for
\(\ell \in \mathbb{N}\):


\[x^{\ell+1} = \operatorname{proj}_n \circ \cdots \circ \operatorname{proj}_1 x^\ell\]

where \(\operatorname{proj}_i\) is the projection operator onto the
\(i\)-th set in the list s. See 1 for details and convergence.


	Parameters

	
	s (list) – A list of Set objects defining the problem.


	x (array_like, optional) – The initial point \(x^0\), defaults to a randomly picked one if
not given.


	tol (float, optional) – The algorithm is stopped if the fixed point residual
\(\|x^{\ell+1} - x^\ell\|\) is smaller than tol.


	num_iters (int, optional) – The maximum number of iterations that the algorithm can perform.






	Returns

	x – A point in the intersection of the given sets.



	Return type

	ndarray





References
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reg4opt.interpolation.dykstra(s, v, tol=1e-10, num_iters=1000)

	Dykstra projection method.

Given an initial point \(x^0 = v\), this method computes for
\(\ell \in \mathbb{N}\):


\[\begin{split}\begin{align}
    \bar{x}^{\ell+1} &= \frac{1}{n} \sum_{i = 1}^n (x_i^\ell + p_i^\ell) \\
    p_i^{\ell+1} &= x_i^\ell + p_i^\ell - \bar{x}^{\ell+1} \\
    x_i^{\ell+1} &= \operatorname{proj}_i(\bar{x}^{\ell+1} + q_i^\ell) \\
    q_i^{\ell+1} &= \bar{x}^{\ell+1} + q_i^\ell - x_i^{\ell+1}
\end{align}\end{split}\]

where \(\operatorname{proj}_i\) is the projection operator onto the
\(i\)-th set in the list s. See 2 and 3 for details and
convergence.


	Parameters

	
	s (list) – A list of Set objects defining the problem.


	v (array_like) – The point to be projected.


	tol (float, optional) – The algorithm is stopped if the fixed point residual
\(\|x^{\ell+1} - x^\ell\|\) is smaller than tol.


	num_iters (int, optional) – The maximum number of iterations that the algorithm can perform.






	Returns

	x – An approximate projection of v onto the intersection of the sets.



	Return type

	ndarray
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reg4opt.interpolation.halpern(s, v, tol=1e-10, num_iters=1000)

	Halpern projection method.

Given an initial point \(x^0 = v\), this method computes for
\(\ell \in \mathbb{N}\):


\[\begin{split}\begin{align}
    y^{\ell+1} &= \operatorname{proj}_n \circ \cdots \circ \operatorname{proj}_1 x^\ell \\
    x^{\ell+1} &= \frac{v}{l+1} + \frac{l}{l+1} y^{\ell+1}
\end{align}\end{split}\]

where \(\operatorname{proj}_i\) is the projection operator onto the
\(i\)-th set in the list s. See 4 and
5 for details and convergence.


	Parameters

	
	s (list) – A list of Set objects defining the problem.


	v (array_like) – The point to be projected.


	tol (float, optional) – The algorithm is stopped if the fixed point residual
\(\|x^{\ell+1} - x^\ell\|\) is smaller than tol.


	num_iters (int, optional) – The maximum number of iterations that the algorithm can perform.






	Returns

	x – An approximate projection of v onto the intersection of the sets.



	Return type

	ndarray
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reg4opt.interpolation.haugazeau(s, v, tol=1e-10, num_iters=1000)

	Haugazeau projection method.

Given an initial point \(x^0 = v\), this method computes for
\(\ell \in \mathbb{N}\):


\[x^{\ell+1} = Q(v, x^\ell, \operatorname{proj}_i x^\ell)\]

choosing \(i = 1, \ldots, n\) sequentially, and where
\(\operatorname{proj}_i\) is the projection operator onto the
\(i\)-th set in the list s, and


\[\begin{split}Q(x, y, z) = \begin{cases}
    z & \text{if} \ d = 0, a \geq 0 \\
    x + (1 + a/c) (z - y) & \text{if} \ d > 0, a c \geq d \\
    y + (c/d) (a(x - y) + b(z - y)) & \text{if} \ d > 0, a c < d \\
    \text{undefined otherwise}
\end{cases}\end{split}\]

where \(a = (x - y)^\top (y - z)\), \(b = \|x - y\|^2\),
\(c = \|y - z\|^2\), and \(d = b c - a^2\). See 6 for details
and convergence.


	Parameters

	
	s (list) – A list of Set objects defining the problem.


	v (array_like) – The point to be projected.


	tol (float, optional) – The algorithm is stopped if the fixed point residual
\(\|x^{\ell+1} - x^\ell\|\) is smaller than tol.


	num_iters (int, optional) – The maximum number of iterations that the algorithm can perform.






	Returns

	x – An approximate projection of v onto the intersection of the sets.



	Return type

	ndarray
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reg4opt.interpolation.interpolator(x, x_i, t_i, zeta, t0=None, solver=None, **solver_params)

	Operator interpolation.

This function interpolates the \(\zeta\)-Lipschitz continuous operator
\(\mathcal{T} : \mathbb{R}^n \to \mathbb{R}^n\) to the point \(x\),
preserving the Lipschitz continuity.

In particular, given the operator evaluations


\[t_i = \mathcal{T} x_i, \quad i = 1, \ldots, D\]

the function computes \(\hat{\mathcal{T}} x\) as


\[\begin{split}\hat{\mathcal{T}} x = \begin{cases}
    t_i & \text{if} \ x = x_i \\
    \hat{t} \in \bigcap_{i \in [D]} \mathbb{B}_{\zeta \|x - x_i\|}(t_i) & \text{otherwise}
\end{cases}\end{split}\]

where \(\mathbb{B}_{\zeta \|x - x_i\|}(t_i)\) is a ball of center
\(t_i\) and radius \(\zeta \|x - x_i\|\). We see then that
interpolating requires finding a point in the intersection of balls. To
this end, an efficient approach is to use the method of alternating
projections (MAP) (see alternating_projections), but other solvers are
available.


	Parameters

	
	x (array_like) – The point where the interpolated operator should be evaluated.


	x_i (list) – The points of the regression problem.


	t_i (list) – The solution of the regression problem.


	zeta (float) – The contraction constant.


	t0 (array_like, optional) – The initial condition for the projection algorithm, defaults to a
vector of zeros.


	solver (str) – The method that should be used to find a point in the intersection of
balls. By default the MAP is used, due to its efficiency in this
scenario.


	solver_params (tuple) – Parameters for the solver, for example the maximum number of iterations
that it can perform.






	Returns

	The interpolated operator evaluated at x.



	Return type

	ndarray






See also


	alternating_projections
	The method of alternating projections (MAP).







Notes

If the operator is defined in \(\mathbb{R}\) (that is, \(n = 1\)),
then the balls become closed intervals on the line and the intersection
can be computed in closed form.






	
reg4opt.interpolation.parallel_projections(s, x=None, tol=1e-10, num_iters=1000)

	Method of parallel projections.

Given an initial point \(x^0\), this method computes for
\(\ell \in \mathbb{N}\):


\[x^{\ell+1} = \frac{1}{n} \sum_{i = 1}^n \operatorname{proj}_i x^\ell\]

where \(\operatorname{proj}_i\) is the projection operator onto the
\(i\)-th set in the list s. See 7 for details and convergence.


	Parameters

	
	s (list) – A list of Set objects defining the problem.


	x (array_like, optional) – The initial point \(x^0\), defaults to a randomly picked one if
not given.


	tol (float, optional) – The algorithm is stopped if the fixed point residual
\(\|x^{\ell+1} - x^\ell\|\) is smaller than tol.


	num_iters (int, optional) – The maximum number of iterations that the algorithm can perform.






	Returns

	x – A point in the intersection of the given sets.



	Return type

	ndarray
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reg4opt.interpolation.peaceman_rachford(s, x=None, a=0.95, tol=1e-10, num_iters=1000)

	Peaceman-Rachford splitting (PRS).

Given an initial point \(x^0\), this method computes for
\(\ell \in \mathbb{N}\):


\[\begin{split}\begin{align}
    x_i^{\ell+1} &= \operatorname{proj}_i z_i^\ell \\
    \bar{x}^{\ell+1} &= \frac{1}{n} \sum_{i = 1}^n x_i^{\ell+1} \\
    z_i^{\ell+1} &= (1-a) z_i^\ell + a (2 \bar{x}^{\ell+1} - x_i^{\ell+1})
\end{align}\end{split}\]

where \(\operatorname{proj}_i\) is the projection operator onto the
\(i\)-th set in the list s, and \(a \in (0,1]\). See 8 for
details and convergence.


	Parameters

	
	s (list) – A list of Set objects defining the problem.


	x (array_like, optional) – The initial point \(x^0\), defaults to a randomly picked one if
not given.


	a (float, optional) – The relaxation constant of the Peaceman-Rachford, defaults to 0.95.


	tol (float, optional) – The algorithm is stopped if the fixed point residual
\(\|x^{\ell+1} - x^\ell\|\) is smaller than tol.


	num_iters (int, optional) – The maximum number of iterations that the algorithm can perform.






	Returns

	x – A point in the intersection of the given sets.



	Return type

	ndarray
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reg4opt.utils module

Utility functions.


	
reg4opt.utils.generate_data(T, x, num_data, method='normal', **kwargs)

	Generate the training data for an operator regression problem.

The function encapsulates different method of generating the training data
for an operator regression problem.


	Parameters

	
	T (operators.Operator) – The operator source of the training data.


	x (ndarray) – The center of the training data, that is, all other training points are
chosen as perturbations of x.


	num_data (int) – The number of training points, including x, which means that
num_data-1 points are randomly selected.


	method (str, optional) – The method to choose the training points, defaults to “normal”.


	**kwargs (tuple) – The arguments of method.






	Returns

	
	list – The points \(x_i\) selected by the method.


	list – The operator T evaluated in the chosen points.











See also


	sample_training_points
	The function used to sample \(x_i\).












	
reg4opt.utils.generate_data_cr(f, x, num_data, gradient=False, method='normal', **kwargs)

	Generate the training data for a convex regression problem.

The function encapsulates different method of generating the training data
for a convex regression problem, including gradient information
if required.


	Parameters

	
	f (tvopt.costs.Cost) – The cost source of the training data.


	x (ndarray) – The center of the training data, that is, all other training points are
chosen as perturbations of x.


	num_data (int) – The number of training points, including x, which means that
num_data-1 points are randomly selected.


	gradient (bool, optional) – Specify if also gradient information should be returned.


	method (str, optional) – The method to choose the training points, defaults to “normal”.


	**kwargs (tuple) – The arguments of method.






	Returns

	
	list – The points \(x_i\) selected by the method.


	list – The operator T evaluated in the chosen points.











See also


	sample_training_points
	The function used to sample \(x_i\).












	
reg4opt.utils.norm(x)

	Compute the norm of the given vector.


	Parameters

	x (array_like) – The vector array.



	Returns

	The square norm.



	Return type

	ndarray






See also


	square_norm
	Square norm







Notes

The function reshapes x to a column vector, so it does not correctly
handle n-dimensional arrays. For n-dim arrays use numpy.linalg.norm.






	
reg4opt.utils.norm_1(x)

	Compute the \(\ell_1\) norm of the given vector.


	Parameters

	x (array_like) – The vector array.



	Returns

	The \(\ell_1\) norm.



	Return type

	ndarray






See also


	norm
	Euclidean norm







Notes

The function treats x as a one-dimensional vector (row or column). For
n-dim arrays use numpy.linalg.norm.






	
reg4opt.utils.print_progress(i, num_iter, bar_length=80, decimals=2)

	Print the progresso to command line.


	Parameters

	
	i (int) – Current iteration.


	num_iter (int) – Total number of iterations.


	bar_length (int, optional) – Length of progress bar.


	decimals (int, optional) – Decimal places of the progress percent.








Notes

Adapted from here [https://gist.github.com/aubricus/f91fb55dc6ba5557fbab06119420dd6a].






	
reg4opt.utils.random_intersecting_balls(n, d, max_radius=100)

	Randomly generate a set of intersecting ball sets.

This utility function generates a set of d balls in \(\mathbb{R}^n\)
for the purpose of testing projection methods. The centers of the balls are
uniformly chosen points in the unit sphere, and the radius is randomly
picked between 0 (excluded) and max_radius.

As a consequence, the origin of \(\mathbb{R}^n\) is (one of the) points
in the intersection of the balls.


	Parameters

	
	n (int) – The dimension of the space.


	d (int) – The number of balls to be generated.


	max_radius (float, optional) – The maximum radius of the generated balls. The default is 100.






	Returns

	s – A list of tvopt.sets.Ball objects representing the sets.



	Return type

	list





Notes

Adapted from here [https://stackoverflow.com/a/54544972].






	
reg4opt.utils.sample_training_points(x, num_data, method='normal', **kwargs)

	Sample training points.

The function encapsulates different methods of generating the training
points for a regression problem. The choices are


	normal: the data are chosen as \(x + d_i\), where
\(d_i\) are random vectors with normal distribution (by default the
variance is 0.01);


	fireworks: the data are chosen as \(x + d_i\), where we have
\(d_i = a e_j\), with \(a\) a r.v. with normal distribution (with
default variance 0.01) and \(e_j\) a randomly selected vector of the
standard basis;


	uniform: the data are chosen as \(x + d_i\), where
\(d_i\) are random vectors with uniform distribution in [-a, a] (by
default a = 1).





	Parameters

	
	x (ndarray) – The center of the training data, that is, all other training points are
chosen as perturbations of x.


	num_data (int) – The number of training points, including x, which means that
num_data-1 points are randomly selected.


	method (str, optional) – The method to choose the training points, defaults to “normal”.
Alternatives are “fireworks” (alias “fw”, “f”) and “uniform” (alias “u”).


	**kwargs (tuple) – The arguments of method.






	Returns

	The points \(x_i\) selected by the method.



	Return type

	list










	
reg4opt.utils.square_norm(x)

	Compute the square norm of the given vector.


	Parameters

	x (array_like) – The vector array.



	Returns

	The square norm.



	Return type

	ndarray





Notes

The function reshapes x to a column vector, so it does not correctly
handle n-dimensional arrays. For n-dim arrays use numpy.linalg.norm.
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